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Work on this effort divided up into three phases. The first phase, which spanned the fast three

years of the effort, focused on "Research on Soar". The second phase, which spanned the next

2.5 years of the effort, focused on "Learning to Use Devices" in the context of Soar. The third

phase, which spanned the last two years of the effort, focused on "Induction as Knowledge In-

tegration". These three phases will be described in brief in the following three sections.

I. Research on Soar

The fhst phase covered research on intelligent behavior in the context of the Soar architecture

(Laird, NeweU, & Rosenbloom, 1987; Rosenbloom et al, 1991; Rosenbloom, Laird, & Newell,

1993). Two threads focused on learning - one on the acquisition of new knowledge (knowledge

level learning) and the other on the reformulation of existing knowledge so as to improve perfor-

mance (symbol level learning). The third thread focused on analogy/case-based-reasoning. The

fourth and final thread focused on the relationship between Soar and Connectionism.

1.1. Knowledge Level Learning

Although Soar's learning mechanism was called chunking based on a related psychological

notion of the same name (Miller, 1956), it gradually became apparent that Soar's chunking

mechanism had a great deal of difficulty producing the kind of declarative learning - that is, the

acquisition of new knowledge from the outside - that had become so central to the concept in

psychology. Instead, Soar's chunking appeared to be limited to pure speed up learning. Prior to

this effort we had begun to lay out how Soar's chunking could in fact acquire new knowledge.

As part of this effort, this capability was better understood, implemented in a general fashion,

and extended to handle simple forms of inductive learning (Rosenbloom & Aasman, 1990;

Rosenbloom, Newell, & Laird, 1991). It also led to the development of a new polynomiaUy

bounded generalization algorithm for version spaces (Smith & Rosenbloom, 1990), and was one

of the key inputs in developing the ideas that led to the third phase of this effort (Section 3).

1.2. Symbol Level Learning

The focus of this effort was on understanding the problem of expensive chunks and on inves-

tigating the space of possible solutions to the problem. Chunking is a learning mechanism that

acquires new rules from traces of system problem solving. These new rules are (usually) in-

tended to speed up the system via a form of caching, in which extended problem solving is

replaced by the match and fLring of previously learned rules. Unfortunately, the match process

for new rules can be exponential (in the number of rule conditions) in the worst case, so that

sometimes the acquisition of new rules actually slows down the system rather than speeding it

up. This is the phenomenon of expensive chunks (Tambe, Newell, & Rosenbloom, 1990), which

is a form of the utility problem in explanation based learning (Minton, 1988).

The identification of the cause of expensive chunks as being the presence of multi-attributes -

attributes of objects that can simultaneously take on more than one value - led to the identifica-

tion of a restriction on the system's expressiveness that can provide a linear-time guarantee for

the match of individual rules (Tambe & Rosenbloom, 1988; Tambe & Rosenbloom, 1989;

Tambe, Newell, & Rosenbloom, 1990). This unique-attribute restriction ensures that every at-



tribute of every object has at most one value at a time. It eliminates slowdowns, but at the cost

of making it more difficult to express certain kinds of structures - basically, undifferentiated

sets.

Follow-on work further investigated the space of possible solutions to the problem of expen-

sive chunks, with an eye out for alternatives that traded-off less in the way of expressibility.

First, four dimensions were identified in terms of local syntactic constraints on working memory

- number of attributes per object, number of values per attribute, number of attributes per value,

and number of objects per attribute - whose cross-product defines a space of possible alter-

natives. Within this space, it was possible to prove that unique-attributes was the best alternative

(Tambe & Rosenbloom, 1990; Tambe & Rosenbloom, 1994).

Subsequently a second space of alternatives was discovered in which alternatives are defined

according to different ways of bounding the search performed during the match process. The

one alternative that was investigated in some depth was instantiationless match, in which instead

of keeping track of which bindings of which variables go together, it is only possible to keep

track of each variables set of bindings separately Orambe & Rosenbloom, 1994). Instantiation-

less match reduces the cost of learned rules by eliminating the cross-product effects that occur

when it is necessary to keep track of which elements of each variable's set of bindings go

together.

While instantiationless match has not been turned into as practical an approach as has unique-

attributes, it did succeed in creating an important tie between production match and constraint

satisfaction. It also has led to a radically new match algorithm, called collection match (Acharya

& Tambe, 1993). Although collection match does not provide the kinds of complexity bounds

needed to eliminate expensive chunks - and was not investigated as part of this effort - it does

appear to provide a highly efficient and practical match algorithm for the standard production

match problem. In particular, it scales particularly well as the size of working memory grows.

1.3. Combining Rule-Based and Case-Based Reasoning

This effort started with a focus on advice taking and analogical reasoning within Soar, but then

evolved into a study outside of Soar of the combination of rule-based reasoning (RBR) and case-

based reasoning (CBR) in the domain of proper name pronunciation. The basic idea is to use

general - but only approximately correct - rules to suggest alternatives, and then to search a

case base for compelling exceptions to the rules (Golding, 1991; Golding & Rosenbloom, 1991;

Golding & Rosenbloom, 1996). This allows these two distinct souw_s of knowledge to be used

synergistically to improve overall accuracy, and in so doing allows a lightly engineered

academic system for Proper Name Pronunciation to be competitive with existing heavily en-

gineered commercial systems (Golding & Rosenbloom, 1993). This basic architecture should be

usable beyond the domain of Proper Name Pronunciation, whenever reasonably accurate and

efficient - but not perfect - rules are available, along with a set of relevant cases and a

similarity metric (for evaluating case closeness).

Other innovations in the work include using the rule base in service of case indexing

(prediction-based indexing) and adaptation (rational reconstruction), so that improvements in



the rules lead to faster and better CBR; the use of positive analogies to help choose between

plausible rule-proposed alternatives that are not eliminated by negative analogies (i.e., by excep-

tions); the identification of the phenomenon of analogical decline, in which fewer good

analogies are found for rarer names; a method for automatically extending an incomplete domain

theory; a method for evaluating proposed analogies via their accuracy over the entire case base;

and an automated threshold setting procedure.

Two of the papers on this work won prizes. Golding & Rosenbloom (1993) won the the

American Voice Input/Output Society Gary K. Poock Editor's Award for the Outstanding Paper

in the AVIOS Journal during 1993. Golding & Rosenbloom (1991) won the award for the best

written paper at the Ninth National Conference on Artificial Intelligence.

1.4. Connectionism, Goal-Oriented Behavior, and Soar

This effort performed a functional analysis of goal-oriented behavior; used it to analyze both

Soar and Connectionism and to create a mapping between the two; and outlined a strategy for

creating a hybrid Connectionist Soar (Rosenbloom, 1989). The most interesting outcome of this

investigation was the realization that Soar's approach to memory access - which is based on

iterations of parallel rule f'tring until quiescence - maps quite closely onto the memory access

approach typically used in connectionist networks. There are of course differences in the details,

but this mapping lets us consider a Soar-like system that replaces Soar's memory structure with a

connectionist net, yet still supports Soar's higher level goal-oriented capabilities. This idea was

later followed up outside of this effort in a partial connectionist reimplementation of Soar, called

Neuro-Soar (Cho, Rosenbloom, & Dolan, 1991).

2. Learning to Use Devices
When presented with a new device to use - such as a VCR, a data logger, a network con-

figurer, or an experimental package - people are able to learn to use the device based on a

combination of knowledge sources. Typical knowledge sources might be manuals, experimen-

tation with the device, knowledge of related devices, and verbal instructions. The effort in this

phase focused on providing the same kind of capability to automated systems, so that when as-

sociated devices are upgraded or changed, the system can learn how to use the new devices from

its available sources of knowledge, rather than requiring reprogramming.

One outcome of this effort was the development of a system that can start out with no

knowledge about a video cassette recorder (VCR) and learn to play a tape on the VCR based on a

single knowledge source - analogy with an audio cassette deck (ACD). The system is con-

structed in Soar as a set of five problem spaces, where each problem space corresponds to a

model of a device, or an interface, or a domain, or some other coherent body of knowledge. The

particular problem spaces used here are: the top-space, which interacts with the world; two

domain spaces that characterize classes of tasks in the world (listen-to-music and watch-a-

movie); a device model for the ACD; and a communication model that knows which buttons to

press to elicit a desired function from the ACD. The top space begins with only primitive motor

commands and perceptual input. If it does not know what to do, it reaches an impasse, and uses



another problem space (such as watch-a-movie) in acquiring a task operator. This generic

process of using other spaces to generate information usable in performing the task continues

until the task has been refined enough that motor commands can be executed that will ac-

complish it.

In addition to learning from an analogical model, we interfaced a version of NL-Soar - the

Soar-based natural language understanding capability being developed at CMU (Lehman, Lewis,

& Newell, 1991) - to the system that learns to play tapes on the VCR, and extended it to

demonstrate the acquisition of a fragment of relevant VCR knowledge from manual-like natural-

language input. In particular, it processed the sentence "To play a tape, press the PLAY button"

to yield part of the VCR device knowledge. There is admittedly still a long way to go here, but

there are some very interesting opportunities and issues that it raises, including how to use the

system's models (of devices and domains) as much of the semantics of the natural-language

comprehension system, and how to use other knowledge sources (such as models of similar

devices) to help in understanding and disambiguating the manual. 1

In addition to the VCR domain, a system was also developed that could start out with no

knowledge of a text editor, and learn to edit simple strings based on two knowledge sources:

analogy with a typewriter, and observation of the effects of proposed actions on the text editor.

This system uses two knowledge sources: a model of a related device and experimentation with,

and observation of, the actual device.

The key intellectual issue that showed up in constructing these systems (outside of the the NL

related issues) was how to perform the coupling between two arbitrary problem spaces that are

used within a goal-subgoal relationship - even when the coupling hadn't been anticipated; that

is, how to encode an impasse in one space into a problem to be solved in the other space, and

how to encode the results of the solution in the subspace back into useful information in the

parent space. To date in Soar this issue has always been addressed by hardcoding translation

rules that create initial states in new problem spaces and return results to parent spaces.

However, such an approach is inadequate when the range of impasses that can occur, and the

range of spaces that can potentially be used for them, is quite large.

This problem can be viewed as a generalization of the analogy problem. In analogy, the two

spaces are both device models, but about different devices (such as the VCR and ACD).

Whereas here, in addition to this normal analogical relationship, there may be a need to map

from a model of the domain to a model of the device, or between manual knowledge and a

device space.

We ended up casting this problem in a comprehension-based framework. When an impasse

occurs, and a problem space is selected for it in a subgoal, the subgoal space fast comprehends

the impassed space in its own terms - just as if, for example, it were an utterance in natural

language - to determine how to formulate the problem in terms of similar tasks that it under-

IThis approach bears a close relationship to a proposal by Goel and Eiselt on model-based text interpretation and

and knowledge acquisition (Goel & Eiselt, 1991).



stands. This corresponds to a similar problem in the selected space. The similar problem is

solved, and the solution returned to the parent space. The result is returned by proposing a com-

prehension operator for the parent-space that is to comprehend the solution. When the solution is

comprehended, the parent space should have enough information to resolve the impasse. This

comprehension process should have much in common structurally with other comprehension

processes, such as natural language (NL) comprehension, but the knowledge used by it is likely

to be different.

This phase of the effort was terminated at this point. Some interesting work had been done,

and interesting issues and frameworks had been identified. However, it was still a long way

from the kinds of results needed for the PhD thesis of which it was to be the basis. The basic

problem was two-fold: (1) using in a general manner any one of the knowledge sources upon

which learning was to be based was clearly (at least at this point) a massive undertaking; and (2)

sufficient ideas for how to convert the comprehension-based framework for mapping into some

form of general theory and implementation were lacking. As a consequence, we switched focus

to the more well-defined topic of the third phase: induction as knowledge integration.

3. Induction as Knowledge Integration
The third phase arose out of the earlier work on knowledge level learning (Section 1.1); out of

an earlier attempt to generate a general framework for the acquisition of new knowledge

(Rosenbloom, 1988); and from analysis of a range of induction algorithms, in particular

knowledge-intensive induction algorithms such as IVSM (Hirsh, 1990) and GRENDEL (Cohen,

1992). The goal was to develop a general means for integrating knowledge into induction. The

key assumption motivating this was that the best way to improve both the accuracy and ef-

ficiency of induction algorithms is to use whatever knowledge might be available and relevant.

Only once the knowledge is exhausted, does it make sense to try to tune the other aspects of the

induction algorithm. In contrast, most of machine learning is focused on tuning induction al-

gorithms that use examples as their only form of knowledge. The few systems that can use any

knowledge beyond the examples, can generally use only a few specific forms of knowledge, and

these in only a small number of predetermined ways.

Our investigations during this phase led us through three different frameworks for the integra-

tion of knowledge into induction. The Transformational Framework analyzed induction al-

gorithms as black boxes with input ports for knowledge (Rosenbloom et al, 1993). Additional

knowledge was integrated in by either reformulating the existing set of ports or by developing

preprocessors that that translated the new knowledge into forms understandable by the existing

ports; for example, converting constraints on the concept into pseudo-examples. The Problem

Space Framework analyzes induction as search over a space of hypotheses (Rosenbloom et al,

1993). Although this is not particularly a new concept (Simon & Lea, 1974; Mitchell, 1979;

Rosenbloom, 1988), the key new idea was to understand the use of knowledge in induction in

terms of how it specifies, constrains, and orders the elements of this search space. The

Constraint Framework is much like the Problem Space Framework; however, instead of focus-

ing on search, it focuses on the integration of constraints and preferences over sets of hypotheses.



The constraint framework was developed sufficiently to form the basis for a PhD Thesis

(Smith, 1995), with additional publications based on it also in progress. Here's the abstract of
the thesis:

Accuracy and efficiency are the two main evaluation criteria for induction algorithms. One of
the most powerful ways to improve performance along these dimensions is by integrating ad-
ditional knowledge into the induction process. However, integrating knowledge that differs sig-
nificantly from the knowledge already used by the algorithm usually requires rewriting the
algorithm.

This dissertation presents KII, a Knowledge Integration framework for Induction, that provides
a straightforward method for integrating knowledge into induction, and provides new insights
into the effects of knowledge on the accuracy and complexity of induction. The idea behind KII
is to express all knowledge uniformly as constraints and preferences on hypotheses.
Knowledge is integrated by conjoining constraints and disjoining preferences. A hypothesis is
induced from the integrated knowledge by f'mding a hypothesis consistent with all of the con-
straints and maximally preferred by the preferences.

Theoretically, just about any knowledge can be expressed in this manner. In practice, the con-
straint and preference languages determine both the knowledge that can be expressed and the
complexity of identifying a consistent hypothesis. RS-KII, an instantiation of KII based on a
very expressive set representation, is described. RS-KII can utilize the knowledge of at least
two disparate induction algorithms - AQ-I 1 and CEA ("version spaces") - in addition to
knowledge neither algorithm can utilize. It seems likely that RS-KII can utilize knowledge
from other induction algorithms, as well as novel kinds of knowledge, but this is left for future
work. RS-KU's complexity is comparable to these algorithms when using only the knowledge
of a given algorithm, and in some cases RS-KII's complexity is dramatically superior. KII also
provides new insights into the effects of knowledge on induction that are used to derive classes
of knowledge for which induction is not computable.
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